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Since its discovery, many adhere to the view that asymmetric dimethylarginine (ADMA), as an inhibitor of the synthesis of nitric
oxide (NO), contributes to the pathogenesis of various diseases. Particularly, this is evident in disease of the cardiovascular system,
in which endothelial dysfunction results in an imbalance between vasoconstriction and vasodilatation. Even if increased ADMA
concentrations are closely related to an endothelial dysfunction, several studies pointed to a potential beneficial effect of ADMA,
mainly in the context of angioproliferative disease such as cancer and fibrosis. Antiproliferative properties of ADMA independent
of NO have been identified in this context. In particular, the regulation of ADMA by its degrading enzyme dimethylarginine
dimethylaminohydrolase (DDAH) is the object of many studies. DDAH is discussed as a promising therapeutic target for the
indirect regulation of NO. In hypoxia-related chronic respiratory diseases, this controversy discussion of ADMA and DDAH is
particularly evident and is therefore subject of this review.

1. Introduction: The Endothelial
ADMA/NO Pathway

LI Nitric Oxide. Endothelial-derived NO is known to be the
major mediator regulating vasomotor tone. NO is involved
in a wide range of mechanisms with regulatory function,
including inhibition of platelet adhesion and aggregation, of
monocyte adhesion and of smooth muscle cell proliferation.
In this way, NO plays a crucial role in vascular homeostasis.
NO is produced by nitric oxide synthase (NOS) enzymes
[1]. There are three distinct isoforms which catalyze the
formation of NO from the substrate L-arginine and O, with
L-citrulline being produced as a second product. The distinct
isoforms differ in their tissue and cell type distribution as
well as in their regulatory mechanisms [2]. The three isoforms
are neuronal NOS (NOSI, nNOS) [3], inducible NOS (NOS2,
iNOS) [4], and the endothelial NOS (NOS3, eNOS) [5].

Among others, nNOS is mainly expressed in the central and
peripheral nervous system, kidney, pancreas, and skeletal
muscle [6]. The inducible form of NOS was initially identified
as a mediator of innate immunity and macrophages and could
be induced in different cell types like vascular smooth muscle
cells, renal tubular epithelium, hepatocytes, and mesangial
cells [7]. The expression of the eNOS is largely restricted to the
vascular endothelial cells and mainly in medium- and large-
sized arteries and arterioles [7].

1.2. Nitric Oxide and Oxygen. Not only is the production of
NO oxygen dependant but also NO plays a very important
role in the regulation of O, delivery through vasomotor
control locally and cardiovascular and respiratory response
centrally. O, is well known for its important function in
cellular energy production. O, carrying capacity and sat-
uration of the blood flow are the principle determinants
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FIGURE 1: Endothelial L-arginine/NO pathway. L-arginine residues
in proteins are methylated by protein-arginine methyltransferases
(PRMT), after proteolysis ADMA is released and could replace
L-arginine from the binding site at the NOS. ADMA is mainly
degraded by dimethylarginine dimethylaminohydrolases (DDAH)
to L-citrulline. The degradation of ADMA by alanine-glyoxylate
aminotransferase 2 (AGXT-2) to «-keto-6-(N(G),N(G)-
dimethylguanidino)valeric acid (DMGV) is described as an
alternative way which metabolized ADMA only to a very small
proportion. This ADMA/AGXT-2 pathway is not object of this
review.

of tissue O, delivery. Therefore, NO plays a major role in
regulating vascular tone and organ function in the setting
of hypoxia [8]. Paradoxically, hypoxic environment decreases
eNOS expression and function which shows us that the view
of NO as only a regulator of the vasotonus or blood pressure
is too simple. In the last years, the NO signal cascade is
discussed as a “sense-and-response” pathway for reduced O,
bioavailability through an interaction with the O,-sensing
pathway (for review see [9]). Another example pointing to
the complexity of the role of the L-arginine/NO pathway
under hypoxic conditions was shown by Howell et al. [10].
They could demonstrate that supplementation of L-arginine
promotes angiogenesis within the gas exchange region of
hypoxic lungs and it attenuated the development of pul-
monary hypertension in rats in a NO-independent manner
[10]. This shows that, beyond the function as a substrate for
the NOS, L-arginine seems to have additional proangiogenic
properties especially in the pulmonary circulation.

1.3. Endogenous NOS Inhibitors in Cardiovascular Disease. N-
guanidino-dimethylation of L-arginine residues in proteins
by protein-arginine methyltransferases (PRMTs) and subse-
quent proteolysis lead to the release of free dimethylated L-
arginine analogous in the tissue and plasma (Figure 1) [11].
ADMA is known to be an inhibitor of all three isoforms
of NOS. It competes with L-arginine for the binding site
in the active centre of NOS [12]. Furthermore, ADMA can
“uncouple” the NOS by shifting the balance of NO generation
to the side of superoxide production. In vitro and in vivo
studies demonstrate that an increase in ADMA could lead
to an impaired NO bioavailability as well as an increase
in the formation of reactive oxygen species (ROS) [13].
Another dimethylated L-arginine analogue is the symmetric
dimethylarginine (SDMA), but its role in the endothelial
NO pathway is still unclear. SDMA and ADMA are able to
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interfere with the substrate availability of NOS by inhibiting
the accordant transmembrane cationic amino acid transport
(CAT) system of L-arginine, but the IC;, values are above
the estimated endogenous ADMA and SDMA concentrations
[14]. In a large number of prospective clinical studies, ADMA
has been characterized as a predictor of major cardiovascular
events and mortality in patients with low, medium, and
high cardiovascular risk [15, 16]. Some recent studies suggest
that SDMA is also associated with cardiovascular events
[17, 18] and we have shown that SDMA, but not ADMA, is
predictive of all-cause mortality after ischemic stroke [19, 20].
Almost 80% of ADMA is enzymatically hydrolyzed by the
dimethylarginine dimethylaminohydrolase (DDAH). DDAH
is expressed in two isoforms, DDAH-1 and DDAH-2, which
are characterized by distinct tissue distribution, are encoded
by different genes, and may exert distinct functional roles
[21, 22]. Overexpression of DDAH-1 or DDAH-2 rescues
mice from adverse effects of ADMA infusion and improves
recovery from vascular damage [23-28]. Transient siRNA-
mediated knock-down experiments in rats imply specific
functions of DDAH isoforms. Based on these experiments, it
appears that DDAH-1is the dominant form regulating plasma
ADMA levels, whereas DDAH-2 appears to be required for
actelycholine-dependent vasodilatation [22].

The indirect regulation of the NO bioavailability by vary-
ing the ADMA concentrations is discussed as a therapeutic
option in various diseases [29]. The regulation of ADMA
concentration is possible on different levels. An increase of
ADMA formation by enhanced PRMT activity could be seen
in the context of different types of human cancer pointing
to an decreased NO bioavailability [30]. An enhanced PRMT
activity could be also seen in various chronic respiratory dis-
eases leading to the discussion that protein methylation might
be a mechanism with therapeutic potential [31]. The effect on
NO formation due to increased ADMA concentrations by a
reduced ADMA degradation could be recently demonstrated
by Ghebremariam and colleagues. They identified a potent
DDAH inhibitor which significantly increased intracellular
ADMA levels and reduced lipopolysaccharide-induced NO
production in endothelial cells [32].

However, it is undisputed that increased concentrations
of ADMA and SDMA in tissue and plasma in human as well
as in rodents are associated with an unfavorable course of
various cardiovascular diseases to an increased mortality. The
causing mechanism for ADMA is plausibly the inhibition of
the NO production which results in an endothelial dysfunc-
tion, but why SDMA is associated with an unfavorable out-
come is still unclear. The correlations of ADMA and SDMA
with cardiovascular diseases are discussed elsewhere [33-35].
This review will focus especially on the respiratory system and
the effects of hypoxia on the endothelial ADMA/NO pathway.

2. Clinical Perspective: The ADMA/NO
Pathway and Endothelial Function in the
Respiratory System—For Better or Worse?

2.1. Pulmonary Arterial Hypertension. It is undisputed that
in the healthy lung NO plays a key role in maintaining
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the ventilation/perfusion matching as a response of local
hypoxia. In regions of low ventilation the NO levels are
low resulting in a vasoconstriction causing the blood flow
directed towards well-ventilated regions with high levels of
NO to ensure efficient oxygenation of the blood. In patients
with pulmonary arterial hypertension (PAH), activity of NOS
is reduced compared with those of controls leading to a
mismatch in the ventilation/perfusion system [36]. ADMA as
a natural occurring inhibitor of NOS is increased in patients
with PAH and is associated with unfavorable pulmonary
hemodynamics and worse outcome in these patients [37]. The
underlying mechanism is a decreased expression and activity
of DDAH-2 which was shown in lungs from patients with
idiopathic pulmonary arterial hypertension (IPAH) as well
as in lungs of Monocrotaline-treated rats [38]. However, an
increased vasoconstriction in the pulmonary circulation is
only one aspect in the complex pathogenesis of PAH. PAH
arises from a combination of pulmonary vasoconstriction,
from vascular wall remodeling, from in situ thrombosis,
and, in advanced stage of disease, from complex vascu-
lar (plexiform) lesion resembling neoangiogenesis within
completely obliterated vessels [39, 40]. Besides endothelial
injury, invasion of the intima by fibroblast-like cells and
enhanced matrix deposition, the proliferation of endothelial
cells, are responsible for the intimal changes in the vascu-
lature resulting in hypoxemia what than contributes to the
progression of the progression of PAH [41]. NO is a potent
stimulator of endothelial cell proliferation, migration, and
angiogenesis [42]. Inhibition of NO generation by ADMA
in endothelial cells leads to enhanced apoptosis [43]. In
the lung phosphodiesterase (PDE) isoenzymes—especially
PDE-3 and PDE-4—are important regulators of the cAMP
degradation and are upregulated in experimental models of
PAH [43]. It has been shown that cAMP-elevating agents
enhance EC function, especially angiogenesis [44]. Treat-
ment of endothelial cells with a combined PDE-3/4 inhibitor
significantly decreased this ADMA-induced apoptosis by
regulating DDAH-2 activity in a cAMP-dependent manner
[43].

Drugs targeting the NO pathway are of great interest
in the therapy of PAH. Inhaled NO or NO-donors are
suitable for short-term use, but due to the development of
tolerance, the significant number of nonresponders, and the
risk of a rebound effect, NO and NO-donors are not suitable
as long-term treatment. Targeting the NO-sGC-cGMP axis
downstream of NO seems to be more promising. Inhibiting
the degradation of cGMP by inhibiting the PDE-5 has been
approved for the treatment of PAH [45-47]. Stimulation of
the NO receptor soluble guanylate cyclase (sGC) with Rio-
ciguat is another therapeutic strategy acting independently
of NO levels [48]. Riociguat has shown promising results in
clinical trials and might be available soon [49, 50].

2.2. Asthma. Bronchial inflammation, especially in allergic
asthma, is triggered by a cascade of proinflammatory media-
tors including NO [51]. Besides the infiltration and activation
of inflammatory cells in the airways, one key pathogenic
feature in asthma is the hyperresponsiveness of the airways

starting from airway endothelial and smooth muscle cells.
Due to an increased iNOS expression in the lung epithelium
[52], the expired NO levels are increased in asthmatic patients
[53], but in contrast to that the local bioavailability of L-
arginine [54] as well as the NO production by the constitutive
NOS in smooth muscle cells is reduced [55]. Consistent
with this an alteration in L-arginine metabolism especially
in the L-arginine degradation by arginase is associated with
airflow abnormalities in patients with severe asthma [56].
This mismatch in the L-arginine/NO pathway contributes to
the hyperresponsiveness in the airways of asthmatic patients.
Looking at the ADMA/NO pathway in these patients, it is
clearly shown that ADMA is increased in peripheral com-
partments (e.g., plasma) as well as locally in lung specimens,
sputum, and exhaled breath condensate [57]. The increase
in ADMA is often accompanied by a reduced L-arginine
bioavailability leading to a decreased L-arginine/ ADMA ratio
which is proposed to be a novel index reflecting an imbalance
in NOS activity caused by an accumulation of ADMA [58].
In a mouse model of allergic asthma, increased ADMA
concentrations in the lung caused by a decreased DDAH
expression potentiate airway inflammation via modulation
of iINOS [59, 60]. This again provides support that the
ADMA/DDAH pathway seems to be the key regulator of the
L-arginine/NO signaling in a diseased vasculature.

2.3. Chronic Obstructive Pulmonary Disease. Approximately
600 million people worldwide are suffering from chronic
obstructive lung disease (COPD). COPD is the fourth leading
cause of death mainly due to tobacco smoking and must
call a global problem. COPD is the only disease whose
incidence is increasing constantly. The pathophysiological
concept suggests an inflammatory burden and remodeling in
the lung leading to the destruction of the elastic architecture
of the lung and enlargement of distal air space [61]. In about
30-70% of these patients, the COPD is accompanied by
pulmonary hypertension [62]. Pulmonary hypertension is
often thought to be a consequence of hypoxic conditions
in combination with tobacco smoking in patients with
advanced COPD. The impact of a vascular pathology for
the pathogenesis is still unresolved. Oxidative and nitrosative
stress have been suggested as factors involved in the chronic
inflammation and enhanced proliferation processes in the
pathogenesis of COPD [63]. In induced sputum samples
of unstable COPD patients, an increased number of cells
expressing iNOS and nitrotyrosine could be counted [63].
Nitrotyrosine is the reaction product of tyrosine residues and
peroxynitrite, which is formed by the reaction of NO and
superoxide [51]. In this context, NO derived from iNOS is
a key player and is closely linked to the vascular pathology
to emphysema development. In an established experimental
COPD mouse model, the inhibition of iNOS by L-NIL as
well as the genetic depletion of iNOS protected against the
development of PH and Emphysema. In this context the
iNOS downregulation was associated with a reduced number
of proinflammatory cells like granulocytes, macrophages,
activated macrophages, and T cells [64]. Interestingly, after



full establishment of emphysema, iNOS inhibition was asso-
ciated with curative restored lung structure and lung function
[64]. About the role of the ADMA/NO axis in this context
is little known. In exhaled breath condensate of patients
with COPD increased ADMA concentrations have been seen
[65]. The NOS inhibitory capacity of ADMA leads to the
assumption of a regulatory function of ADMA regarding the
NO bioavailability in COPD. But this needs to be verified.

2.4. Idiopathic Pulmonary Fibrosis. Idiopathic pulmonary
fibrosis (IPF) characterized by an injury of alveolar epithe-
lium, alveolar inflammation, and increased proliferation of
fibroblast is the most common and aggressive form of lung
fibrosis. In the process, IPF could result in a progressive loss of
alveolar capillaries and lung architecture, which dramatically
affects sufficient oxygenation and is therefore associated
with high morbidity and mortality [66]. IPF is not typically
defined as a vascular disease. However, the final stage of
IPF resulted in hypoxia which could then effect secondarily
the vascular system. But up to now little is known about
the pathomechanisms and the involvement of the vascular
system especially of the endothelial system. However, what
is certain is the involvement of the inducible NOS in the
pathophysiology of IPE. Lung protein levels of iNOS were
three times higher in patients with IPF compared with control
donors and were observed close to fibrotic scares, thickened
septa, and fibroblast foci. Interestingly, this iNOS expression
was accompanied by an increased colocalized expression
of DDAH-2 [67]. This colocalization suggests an ADMA-
related regulation of the iNOS. In mice with bleomycin-
induced fibrosis, an increased immunoreactivity of DDAH-1
and DDAH-2 was detected in the endothelium, inflammatory
cells, fibroblasts, airway epithelial cells, and alveolar epithelial
cells. This increase of DDAH was associated with decreased
ADMA levels. Surprisingly DDAH inhibition by the L-291
suppressed the abnormal proliferation of alveolar epithelial
cells in IPF and induced apoptosis in an ADMA-dependent
manner. Additionally, DDAH inhibition as well as iNOS
inhibition reduced collagen production by fibroblasts and
improved lung function in bleomycin-treated mice [67]. This
example of IPF demonstrated the controversy of increased
ADMA concentration in the diseased respiratory vascular
system.

2.5. Lung Cancer. Intensive investigation has been conducted
on the role of the NO pathway in cancer. NO plays a role
in cellular proliferation, migration, induction of epithelial-
mesenchymal transition, angiogenesis, and apoptosis of can-
cer cells. Increased NO concentration can be detected in
the microenvironment of many solid cancers. However, the
role of NO appears ambiguous and may indicate a biphasic
nature of NO-mediated cellular effects depending on its
concentration at the site of cancer cells, the chemical redox
environment, and the duration of NO exposure; that is,
NO can act pro- and antitumorigenic (reviewed by [68]).
In non-small-cell lung cancer, increased expression of iNOS
has been observed in tumor tissue, and patients exhale
elevated NO levels [69]. Expression of iNOS contributes
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to the urethane-induced and to genetically, Kirsten rat sar-
coma viral oncogene homolog (KRAS) mutation-induced
lung carcinogenesis whereas inhibition of iNOS reduced
carcinogenesis in animal cancer models [70, 71]. Hypoxia
occurs within growing and expanding tumor tissue and may
drive (neo-)angiogenesis, and cause, if not caught up by novel
vessel generation, tumor necrosis due to lacking tumor cell
nutrition and oxygenation. The histopathological extend of
intratumoral necrosis is associated with unfavorable prog-
nosis in lung cancer and other entities such as colorectal
cancer [72, 73]. Hypoxia stimulates iNOS expression and
NO production and hereby may contribute to tumor blood
supply [74]. Interestingly, intravenous administration of the
NOS inhibitor NQ—nitro—L—arginine (L-NNA) reduced the
tumor blood supply in patients with non-small-cell lung
cancer providing the early clinical evidence that inhibition
of NOS has antivascular activity in cancer [75]. Preclin-
ically, privation of blood flow caused by NOS inhibition
can be restored by administration of L-arginine underlying
the NO dependence of cancerous vascularity [76]. A small
study showed that plasmatic levels of the intrinsic NOS
inhibitor ADMA are increased in patients with small and
non-small-cell lung cancer without concomitant cardiovas-
cular diseases as compared to healthy subjects [30]. In this
study comparable elevation of ADMA has been observed
in other epithelial cancers such as gastric and breast cancer
indicating a vascular response involving the ADMA/NO
pathway in cancer patients [30]. The biological significance
and prognostic role of ADMA in lung cancer are yet
unknown.

2.6. Obstructive Sleep Apnea Syndrome. Obstructive sleep
apnea syndrome (OSAS) is defined by the presence of
symptoms such as daytime sleepiness in conjunction with a
significant quantity of obstructive events occurring during
sleep. The registration of ventilator event includes episodes of
apneas and hypopneas and increased upper airway resistance
[77]. OSAS has been found to be an independent risk factor
for cardiovascular events [78]. Episodes of desaturation-
reoxygenation during night are a typical pattern. This
sequence, defining intermittent hypoxia, causes the gener-
ation of oxidative stress such as production of ROS which
contributes to systemic inflammation found in these patients
[77]. Oxidative stress and inflammatory process such as
increased leukocyte adhesion via expression of adhesion
molecules promote endothelial damage and dysfunction
[79]. Thus, impaired endothelium-dependent vasodilatation
is typically found in patients with OSAS [80] and can partly
be reversed by continuous positive airway pressure (CPAP)
therapy indicating a crucial pathophysiological link between
the endothelial dysfunction and intermittent hypoxemia in
OSAS [81]. The NO metabolism has been strongly implicated
in this relationship. Levels of circulating NO measured as
serum nitrites and nitrates were significantly lower in patients
with OSAS and correlated negatively with parameters of
disease severity in these patients [82]. Furthermore, plasma
ADMA levels are elevated in patients with OSAS irrespec-
tive of the presence of further cardiovascular risk factor
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[83]. Following CPAP therapy with significant reduction of
intermittent episodes of hypoxemia, levels of NO and ADMA
can be restored [82, 84].

3. Clinical Perspective:
Hypoxia and Endothelial Function in
the Respiratory System

Alveolar hypoxia redirects the capillary blood flow to areas of
higher oxygen availability by hypoxia-induced vasoconstric-
tion of pulmonary arterial vessels [85, 86]. This mechanism
accounts for a sufficient maintenance of blood oxygenation.
Cells of the precapillary smooth muscle layer of vessels
located at the entrance of the acinus are thought to be
the sensor and effector cell-type in this mechanism in a
calcium-dependent manner (reviewed by [87]). However,
hypoxia-induced pulmonary vasoconstriction can be abol-
ished by denudation of the endothelial layer as demonstrated
in porcine small pulmonary vessels [88]. This observa-
tion underlies the complexity of the intercellular regulatory
network in response to acute hypoxia. Mediators derived
from the pulmonary arterial endothelial cells critically reg-
ulate the vascular tone in response to hypoxia (reviewed
by [89]). Chronic respiratory diseases such as COPD or
fibrosis are associated with sustained systemic hypoxemia
by altered gas-exchange due to increased diffusion distance,
poor ventilation, or loss of alveolar structures. In contrast
to acute or subacute hypoxia, with sustained hypoxia, a
temporary vasodilatation has been described, followed by
a secondary vasoconstrictor response [87]. The response
of endothelial cells differs from that followed by acute
hypoxia, while under acute hypoxic condition pulmonary
endothelial cells have been shown to slow down their cell
cycle progression (but did not arrest), and under chronic
hypoxic conditions pulmonary endothelial cells exhibited
enhanced proliferation [90, 91]. On cellular level, exposure
to chronic hypoxia leads to progressive pulmonary vascular
remodeling associated with increased vascular resistance and
development of a pulmonary hypertension phenotype [92].
In humans vascular remodeling consisting of thickened pul-
monary vessels and resulting in elevated pulmonary arterial
resistance is evident under chronic hypoxic conditions in
high altitude [93]. In patients with underlying hypoxia-
related respiratory disease, such as COPD, mild elevation of
pulmonary arterial pressure is frequent and associated with
unfavorable prognosis regarding all-cause mortality [62].
However, in this relationship clinical data revealed no clear
correlation between grade of hypoxemia and magnitude of
pulmonary hypertension indicating further mechanism, in
addition to hypoxemia, that leads to vascular remodeling
[94]. A possible additional aspect might be the link between
chronic lung inflammation, systemic inflammation, and as
a result vascular inflammation which leads to dysfunc-
tional endothelial cells and causes cardiovascular morbidity
[95].

4. Hypoxia as a Mediator of
ADMA/NO-Related Endothelial
Dysfunction: Little Is Known

Clinical as well as experimental data clearly show that the
dysregulation of the ADMA/NO pathway plays a crucial role
in the development and/or progression of hypoxia associated
chronic respiratory diseases. But the underlying molecular
mechanisms can be varied and are not really clear. Hypoxia
as a cause for vascular changes or hypoxia as a consequence
of chronic respiratory diseases seems to play a major role in
the regulation of the ADMA/NO pathway.

Acute and chronic changes in oxygen levels lead to the
activation of comprehensive sense and response mechanisms
in the whole organism or locally in different organs and tis-
sues. The heart of these response mechanisms is the hypoxia-
inducible factor (HIF) which consists of a HIF-1 «-subunit
(HIF-la) and a nuclear B-subunit (HIF-1p3) [96]. Under
normoxic conditions, HIF-1& is bound by Von Hippel-Lindau
protein (pVHL) [97]. The binding of pVHL is dependent
on the hydroxylation of a specific proline residue in HIF-
la by the oxygen-dependent prolyl hydroxylase (PHD) 2.
PHD-2 uses O, as a substrate and thus PHD-2 activity
is inhibited under hypoxic conditions [98]. In this bound
and inactive form HIF-la is proteasomal degraded by an
ubiquitin ligase (Figure 2(a)) [99]. HIF-2a, a paralog of HIF-
l«, is found in vertebrates and is also regulated by prolyl
hydroxylation. HIF-2« also dimerizes with HIF-1f3 and plays
an important role in erythropoiesis, vascularization, and pul-
monary development [100]. The pathological consequences
of HIF-1 dysregulation in chronic diseases include a wide
range of both protective and pathogenic responses. Diseases
in which HIF-1 mediates protective responses are coronary
artery disease [101], peripheral arterial disease [102], Colitis
[103], and organ transplant rejection [104]. In cancer [105]
and chronic respiratory diseases like PAH [106] and OSAS
[107] HIF-1 activity contributes to the pathogenesis of the
disease.

Interestingly, there seems to be a mutual regulation of
NO signaling and hypoxic HIF signaling. One key mech-
anism by which NO regulates cellular targets or hypoxia
signaling is S-nitrosylation [108, 109]. Components of the
HIF-1x signaling are targets for S-nitrosylation resulting
in a stabilization of HIF-lo under normoxic conditions
[109, 110]. Direct S-nitrosylation of the Cys-533 of HIF-l«
prevents the binding of pVHL and the following polyubiq-
uitination (Figure 2(b)). S-nitrosylation of Cys-162 of pVHL
prevents the binding of pVHL to HIF-1« (Figure 2(b)) and
also inhibits its ability to mediate the polyubiquitination of
HIF-l« [110]. Additionally, it has been shown that under
hypoxic conditions different concentrations of NO—as an
inhibitor of the mitochondrial cytochrome ¢ oxidase—have
different effects on HIF-« stabilization. Concentrations of
NO < 400 nM resulted in a decrease of HIF-« stabilization
whereas NO concentrations of > 1M caused a stabilization
of HIF-« [111]. This could be explained by an increase in
oxygen-independent PHD-dependent degradation of HIF-«
[112].
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FIGURE 2: S-nitrosylation of HIF-« and pVHL. (a) In the presence of oxygen proline, residues of HIF-« are hydroxylated. This leads
to the polyubiquitination of the pVHL-HIF-a complex resulting in the proteasomal degradation of HIF-«. (b) S-nitrosylation of HIF-«
prevents the binding of pVHL and thereby the polyubiquitination of HIF-a. S-nitrosylation of pVHL also inhibits the ability to mediate
the polyubiquitination of HIF-«. In both cases HIF-« is not degraded but translocated into the nucleus, dimerizes with the HIF-f3 subunit,

and induces the transcriptional activation of target genes.

Additionally NO can also inhibit PHD activity. It com-
petes with O, for Fe** at the catalytic domain of PHDs
and supports the stability of HF-low [113]. The molecular
mechanisms by which hypoxia could regulate NO production
in the endothelium are diverse. They range from transcrip-
tional and epigenetic modifications to posttranscriptional
and posttranslational modifications of the NOS (reviewed
by [9]). This direct interaction between NO signaling and
hypoxia signaling is one regulatory possibility. In pulmonary
endothelial cells hypoxia can also inhibit the substrate avail-
ability of the eNOS by inhibiting the transport of L-arginine
into the endothelial cell [114]. Additionally, we and others
proposed that DDAH is the key determinant of intracellular
ADMA concentrations and that the regulation of DDAH
could therefore modulate NO bioavailability indirectly [29,
32, 115]. In 2001 Murray-Rust et al. [116] identified a Cys-
His-Glu catalytic triad and Leiper et al. showed in 2002
that the presence of the reactive cysteine residue is directly
regulated by NO mediated reversible S-nitrosylation [117].
So, under circumstances when NO generation increases, NO
mediated S-nitrosylation inhibited DDAH activity, which
leads to accumulation of ADMA and inhibition of NOS. It
is conceivable that this cycle is active in all normoxic states of
a modified NO generation as well as in the status of hypoxia.
It recently has been shown that DDAH-1 overexpression in
mice decreased sustained hypoxia-induced pulmonary vaso-
constriction but did not alter the vascular response to acute
or chronic hypoxia. This effect of DDAH-1 overexpression
could be partly explained by an ADMA-induced inhibition
of the NO pathway [118]. This study in combination with

the clinical data on DDAH in chronic respiratory diseases
supports the fact that hypoxia mediate DDAH activity, but
the molecular mechanisms behind this hypoxia-mediated
regulation are still lacking. It is generally accepted that
hypoxia is associated with a high burden of ROS. One possible
link between hypoxia and DDAH regulation might be the
hypoxia-induced formation of ROS. Ito et al. showed that
DDAH activity is inhibited by oxLDL in endothelial cells [119]
leading to increased ADMA concentrations. In addition, the
incubation of cultured endothelial cells with glucose resulted
in an impaired DDAH activity and subsequently increased
ADMA levels. This glucose-mediated effect was inhibited
by antioxidants [120]. The impact of oxidative stress and
DDAH is reviewed in detail by Sydow and Miinzel 2003
[121]. The regulation of DDAH by ROS occurs mainly at the
level of enzyme activity. There are some studies describing
the genetic regulatory promoter regions of DDAH-1 and
DDAH-2 and the mediated effects through activation of
these regions under normoxic conditions. Both promoter
regions of DDAH-1 and DDAH-2 contain a sterol response
element which could bind the statin-induced transcription
factor sterol response element binding protein (SREBP).
Ivashchenko et al. demonstrated a reciprocal regulation by
SREBP-2 and SREBP-1 of DDAH-1 and could therefore
explain the positive ADMA-lowering effect by simvastatin
which might therefore contribute to the vasculoprotective
effect of statins [122]. Hasegawa et al. could identify a specific
protein 1 (SP1) binding site in the DDAH-2 promoter which is
responsible for the DDAH-induced expression and secretion
of the vascular endothelial growth factor (VEGF), resulting
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in an increase in proliferation and migration of endothe-
lial cells. This effect is not dependent on the ADMA/NO
pathway [123]. Jung et al. showed that Vaspin, an adipoc-
itokine expressed in the visceral adipose tissue, mediated
its antiatherogenic effect by a STAT-3 activation of the
DDAH-2 promoter resulting in a decreased ADMA-induced
inhibition of eNOS [124]. Another promoter modification
of DDAH-2 is described by Eikelboom et al. They showed
that Hyperhomocysteinemia, which is also associated with
an increased risk for cardiovascular diseases [125], leads to
a dose-dependent hypermethylation of the CpG island in
the DDAH-2 promoter region. This hypermethylation was
associated with an impaired mRNA expression of DDAH-
2 [126]. These studies lead to the suggestion that there
might be also a genetic regulation of the ADMA/DDAH
pathway via hypoxia but the molecular crosslink between
DDAH and hypoxia signaling besides ROS is not known so
far.

5. The ADMA/NO Pathway: Therapeutic
Potential in Respiratory Diseases?

The direct, therapeutic regulation of NOS in the field of
cardiovascular diseases has been long discussed as a novel
therapeutic strategy. Especially in chronic respiratory lung
diseases, both beneficial and deleterious effects of NO have
been shown in the airways. But up to now there is no potential
direct NOS regulator for the treatment of cardiovascular
diseases including chronic respiratory diseases available.
The therapeutic regulation of ADMA via DDAH might be
another possible mechanism to regulate NOS and there-
fore NO bioavailability indirectly. However, the therapeutic
potential of DDAH is controversial. From many clinical
studies we know that increased ADMA concentrations pro-
mote an endothelial dysfunction and remodeling processes
in the lung. There is evidence that ADMA contributes to
the pathogenesis of various diseases and that the inhibition
of its degradation has protective properties. The positive
impact of DDAH inhibition and therefore increased ADMA
concentration has been already discussed in the setting of
idiopathic pulmonary fibrosis [32, 127] and Endotoxic shock
[128]. It is also conceivable that ADMA is anyhow involved
in the local hypoxia-induced pulmonary vasoconstriction
resulting in the maintenance of the ventilation/perfusion
match in the lung. However, the clinical relevance of a
regulation of the endothelial ADMA/NO pathway needs to
be evaluated and the development of DDAH regulators is
a promising approach as new therapeutic targets in some
chronic respiratory diseases.
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